ESTUDO BACTERIOLÓGICO DE CEPAS DE CORYNEBACTERIUM DIPHTHERIAE ISOLADAS NO ESTADO DE SÃO PAULO, BRASIL, NO PERÍODO DE 1980 A 1986*

Cláudio Tavares SACCHI**
Solange Rodrigues RAMOS**
Carmo Elias Andrade MELLES**
Maria Cristina de Cunto BRANDILEONE**
Maria Lúcia Cecconi TONDELLA**
Augusto de Escragnole TAUNAY**

RIALA 6/624

SACCHI, C.T.; RAMOS, S.R.; MELLES, C.E.A.; BRANDILEONE, M.C.C.; TONDELLA, M.L.C. & TAUNAY, A.E. — Estudo bacteriológico de cepas de Corynebacterium diphtheriae isoladas no Estado de São Paulo, Brasil, no periodo de 1980 a 1986. Rev. Inst. Adolfo Lutz, 47(1/2):31-37, 1987.

RESUMO: Foram analisadas as características bioquímicas de 386 cepas de Corynebacterium j iphtheriae isoladas na Seção de Bacteriologia do Instituto Adolfo Lutz, São Paulo, no período de 1980 a 1986. Verificou-se que 58,3% destas cepas foram capazes de fermentar a sacarose. O biotipo mais frequente foi o mitis (52,2%), seguido pelos biotipos intermedius (26,4%), gravis (9,9%) e de cepas de comportamento atípico (11,7%). Das cepas pertencentes ao biotipo intermedsus, 75,5% foram capazes de fermentar a sacarose. Com relação à produção de toxína, detectada pelo método de Elek, verificou-se que 92,8% das cepas foram toxigênicas e que 97,3% das cepas fermentadoras de sacarose produziram toxina.

DESCRITORES: Corynebacterium diphtheriae, biotipos.

INTRODUÇÃO

As características bioquímicas do Corynebacterium diphtheriae são bastante conhecidas. Com relação à fermentação de carboidratos, alguns deles são usados para diferenciar o C. diphtheriae de outras espécies normalmente não patogênicas. Dentre os carboidratos utilizados, encontramos a sacarose que sempre foi considerada, nos testes de fermentação, o açúcar-chave para a identificação do C. diphtheriae.

Na última edição do manual Bergey¹⁰, de 1986, o *C. diphtheriae* ainda é considerado como não fermentador da sacarose, sendo raras as cepas capazes de utilizá-la. No entanto, em 1943, PESTA-

NA¹² já mostrava que de 1452 cepas isoladas e identificadas no Instituto Adolfo Lutz, em São Paulo, 12,6% fermentaram a sacarose. Em 1957, CHRISTOVÃO⁵,6 e TOPLEY¹¹ relataram uma positividade de 20% em cepas de *C. diphtheriae*, também isoladas em São Paulo. Os mesmos autores, analisando extensa literatura, mostraram que os dados não eram concordantes, e que a variabilidade dos resultados de fermentação da sacarose muitas vezes estava relacionada com o meio base utilizado, a pureza do açúcar ou a pouca sensibilidade do indicador de pH utilizado.

RASKIN¹³, em 1978, analisando 254 cepas de *C. diphtheriae* isoladas e identificadas no Instituto Adolfo Lutz em São Paulo, verificou que 59,8% das mesmas fermentaram a sacarose.

^{*} Realizado na Seção de Bacteriologia do Instituto Adolfo Lutz, São Paulo, SP.

^{**} Do Instituto Adolfo Lutz.

SACCHI, C.T.; RAMOS, S.R.; MELLES, C.E.A.; BRANDILEONE, M.C.C.; TONDELLA, M.L.C. & TAUNAY, A.E. — Estudo bacteriológico de cepas de Corynebacterium diphtheriae isoladas no Estado de São Paulo, Brasil, no período de 1980 a 1986. Rev. Inst. Adolfo Lutz, 47(1/2):31-37, 1987.

Fica assim bem demonstrada a importância do trabalho inicial de PESTANA & FERREIRA¹², que teve sua observação confirmada por CHRIS-TOVÃO^{5,6} e RASKIN et alii¹³. Atualmente, já se admite que há cepas de *C. diphtheriae* fermentadoras de sacarose e que esta característica está associada apenas aos biotipos *mitis* e *gravis* ^{1,2,3,8,15,17}.

No periodo de 1980 a 1986, tivemos a oportunidade de examinar 386 cepas de *C. diphtheriae* que foram submetidas a várias provas bioquímicas, e pesquisa de toxigenicidade na Seção de Bacteriologia do Instituto Adolfo Lutz, em São Paulo. Este estudo teve como objetivo traçar o perfil bioquímico, com atenção especial para a capacidade de fermentar a sacarose, e toxigênico, bem como conhecer a incidência dos diferentes biotipos de *C. diphtheriae* em nosso meio.

MATERIAL E MÉTODOS

Origem das cepas — As 386 cepas de C. diphtheriae analisadas foram obtidas a partir de swabs nasais e faringeanos, submetidos ao diagnóstico bacteriológico pela Seção de Bacteriologia do Instituto Adolfo Lutz no período de 1980 a 1986, de pacientes com suspeita clínica de difteria, comunicantes e portadores encaminhados ao Hospital Emilio Ribas, São Paulo.

Isolamento — O material, uma vez colhido, foi semeado em meio de Loeffler e incubado por um período de 8 a 12 horas, em estufa a 37°C. Após este período, foi feito esfregaço do crescimento bacteriano em lâmina, o qual foi corado pelo método de Albert Laybour7, com a finalidade de demonstrar a presença de bacilos com características morfológicas e tintoriais de Corynebacterium sp. Independentemente da positividade ou não deste exame bacterioscópico presuntivo, procedeu-se à cultura, a partir do meio de Loeffler, que foi feita em placas de ágar-sangue-cistina-telurito (CTBA)16, as quais foram incubadas, por 48 horas, em estufa a 37°C. Destas placas, várias colônias suspeitas foram subcultivadas em meio de Loeffler e incubadas em estufa a 37°C, por 18 horas. Após incubação, esfregaços corados pelo método de Albert Laybour foram usados para confirmar as características morfológicas e tintoriais destes microrganismos isolados.

Identificação — Para a identificação bioquímica, biotipagem e pesquisa de toxigenicidade, usou-se como inóculo uma cultura em ágar Mueller-Hinton incubada por 18 horas em estufa a 37°C. Parte dos testes bioquímicos utilizados foram descritos em publicação anterior14, aos quais foram acrescidas a capacidade de hidrolizar a pirazinamida e pesquisa da atividade hemolítica. A pesquisa de pirazinamida carboxilamidase (Sigma Chemical Co., St. Louis, Mo) foi feita pelo método rápido descrito por SULEA et alii18. Como controle positivo da reação usou-se uma cepa de C. xerosis, KC-1368*. A atividade hemolitica foi observada em placas de ágar sangue (10% de sangue desfibrinado de coelho), com leituras feitas após 24 e 48 horas de incubação, em estufa a 37°C.

Biotipagem — Os biotipos de C. diphtheriae foram caracterizados segundo o esquema preconizado por SARAGEA et alii¹⁶ onde foram analisadas as características morfológicas em CTBA, tipo de crescimento em caldo nutritivo, fermentação do amido e glicogênio, redução de nitrato e atividade hemolítica.

RESULTADOS

Das 386 amostras de *C. diphtheriae*, 58,29% foram capazes de fermentar a sacarose (tabela 1). Com relação à freqüência dos biotipos, 52,21% das cepas pertenceram ao biotipo *mitis*, 26,42% ao biotipo *intermedius*, 9,87% ao biotipo *gravis* e 11,69% corresponderam a cepas que apresentaram um padrão de comportamento atípico (tabela 2).

Quanto à utilização da sacarose, a maior frequência foi encontrada no biotipo *intermedius*, 75,49%, seguido pelos biotipos *gravis*, 71,05%, cepas de comportamento atípico, 57,78% e *mitis*, 47,26% (tabela 1).

Com relação à produção de toxina, verificou-se que 92,77% das cepas foram toxigênicas, sendo que 99,02% das cepas pertencentes ao biotipo *intermedius* foram toxigênicas (tabela 3).

Com relação ao tipo de nitrato redutase, 100% das cepas eram do tipo A, e apenas 0,52% das cepas não apresentavam esta enzima.

^{*} Cepa cedida pela Dra. Frances O. Sottnek, Centers for Disease Control, Atlanta, Georgia, EUA.

TABELA 1

Distribuição anual de biotipos de C. diphtheriae fermentadores da sacarose

Biotipos	1980		1981		1982		1983		1984		1985		1986		Total	
	N9	%	N ₀	%	Nō	%	Nō	%	Nº	%	Nº	%	N9	%	Νò	%
mitis	29	63,04	21	50,0	6	54,54	7	43,75	14	45,16	9	28,12	9	39,13	95	47,26
gravis	5	83,33	7	87,5	0		4	66,23	9	69,23	0	_	2	50,0	27	71,05
intermedius	4	100,00	32	86,49	3	50,0	5	31,25	9	90,0	20	90,91	4	57,14	77	75,49
Atípicos	9	69,23	8	50,0	1	100,0	0	_	3	60,0	0		5	71,43	26	57,78
Total	47	68,11	68	66,02	10	55,55	16	41,02	35	59,32	29	50,88	20	48,78	225	58,29

TABELA 2

Biotipos de C. diphtheriae estudados durante o período de 1980 a 1986.

Ano	Biotipos									
	,	nitis	gravis		intermedius		atípicos		biotipos	
	uò	%	uò	%	nọ	%	'nò	%		
1980	46	66,67	6	8,7	4	5,8	13	18,83	69	
1981	42	41,18	8	7,8	37	35,92	16	15,73	103	
1982	11	61,11	0	-	6	33,33	1	5,55	18	
1983	16	41,03	6	15,38	16	41,03	1	2,56	39	
1984	31	52,54	-13	22,03	10	16,95	5	8,48	59	
1985	32	56,14	1	1,75	22	38,6	2	3,51	57	
1986	23	56,1	4	9,76	7	17,07	7	17,07	41	
Total	201	52,21	38	9,87	102	26,42	45	11,69	386	

TABELA 3

Distribuição anual de biotipos de C. diphtheriae toxigénicos*

Biotipos	mit	mitis tox [†]		gravis tox [†]		intermedius tox ⁺		atípicos tox ⁺		Total de biotipos tox ⁺	
Anos	no	%	n ^o	%	nọ	%	n ^o	%	ʻuò	%	
1980	43	93,48	6	100,00	4	100,00	13	100,00	66	95,65	
1981	41	97,62	8	100.00	37	100,00	16	100,00	102	99.03	
1982	10	90,91	0		6	100,00	1	100.00	17	94.44	
1983	14	87,5	6	100,00	15	92,75	1	100.00	36	92,30	
1984	27	87,1	10	76,92	10	100,00	5	100,00	52	88.14	
1985	29	90,62	0	_	22	100,00	1	50.0	52	91.23	
1986	19	82,61	1	25,0	7	100,00	6	85,71	33	80,49	
Total	183	91,04	31	81,57	101	99,02	43	95,56	358	92,77	

^{*} A pesquisa de toxigenicidade foi feita pelo método de Elek.

DISCUSSÃO E CONCLUSÃO

A percentagem de cepas fermentadoras da sacarose dentre as 386 analisadas foi alta, 58,29%, mostrando ser uma característica importante dos bacilos diftéricos em nosso meio.

Um estudo da incidência de tal positividade, durante os 7 anos analisados, mostra que esta positividade sofreu variações não significativas.

Como pode ser observado na tabela 4, dentre as cepas fermentadoras da sacarose, 219, ou seja, 97,33%, apresentaram prova de toxigenicidade positiva e apenas 6 (2,67%) não foram toxigêni-

cas. Foi assim constatado que a percentagem de cepas fermentadoras da sacarose e toxigênicas permanece elevada¹³.

A alta incidência de cepas capazes de utilizar a sacarose pode estar ligada a uma característica regional, uma vez que não há relatos na literatura referentes a este tipo de frequência em outros países.

Ainda, com relação à fermentação da sacarose, a maior frequência foi para o biotipo *intermedius*, 75,49%, seguido pelos biotipos *gravis*, 71,05%, cepas de comportamento atípico, 57,78%, e *mitis*, 47,26%. Estes dados diferem

TABELA 4

Correlação entre a fermentação da sacarose e a toxigenicidade de

C. diphtheriae

		Total de				
Toxigenicidade	Po	sitiva	Ne	cepas		
	Иó	%	Nº	%	Nò	%
Positiva	219	97,33	139	86,34	358	92,75
Negativa	6	2,67	22	13,66	28	2,25
Total de cepas	225	58,29	161	41,71	386	

dos relatos da literatura internacional que se refere ao fato, como raro, e assinalam nunca ter sido isolada uma cepa fermentadora da sacarose pertencente ao biotipo *intermedius*.

Com relação às cepas produtoras de nitrato-redutase, verificamos que 100% delas apresentaram enzima pertencente ao tipo A. A variedade nitrato-redutase negativa, o *C. diphtheriae mitis* var. belfanti, foi extremamente rara, tendo sido isoladas apenas 2 cepas (0,52%), durante o período de 7 anos.

Apesar de ter havido uma variação dos biotipos no decorrer dos 7 anos (1980 a 1986), o biotipo *mitis* sempre foi o de maior incidência e o *gravis* de incidência mais baixa, com exceção das cepas atípicas.

Dentre as 201 cepas pertencentes ao biotipo *mitis*, 91,04% foram toxigênicas. Este comportamento difere muito do apresentado por cepas do biotipo *mitis* isoladas em outros países. No Canadá, apenas 5% das cepas do biotipo *mitis* isoladas entre 1967 e 1971 foram toxigênicas. Porém, a percentagem das cepas toxigênicas pertencentes ao biotipo *mitis*, nos Estados Unidos da América, variou muito, apresentando uma queda significativa no decorrer de 14 anos analisados, sendo de 14% no período de 1971 a 19759.

A suposição de haver uma correlação entre o biotipo e a gravidade da doença, hoje, já não apresenta consistência, pois todos os biotipos po-

dem ser toxigênicos ou não, causando mal clínico de intensidade variável¹⁶. No entanto, a incidência dos diferentes biotipos pode apresentar valor epidemiológico, pois a freqüência deles, em épocas epidêmicas, é maior para o gravis, seguido do intermedius¹⁶.

Em alguns países da Europa^{15,16,20}, durante os últimos 20 anos, o biotipo *gravis* foi o único isolado em epidemias, enquanto, no período pós-epidêmico, a maior freqüência foi para o *intermedius*. O biotipo *mitis* tornou-se prevalente somente quando a difteria passou a ser endêmica. Para estes países a ocorrência de cepas do biotipo *gravis*, e toxigênicas, representa um indicador epidemiológico implicando em medidas profiláticas imediatas^{3,9,11}. Já nos Estados Unidos da América, em recentes surtos investigados, o biotipo *intermedius* toxigênico prevaleceu, porém, em períodos pós-epidêmicos o biotipo *mitis* continuou sendo o de maior incidência^{15,16,20}.

À semelhança do que tem ocorrido em diferentes países, a prevalência no nosso meio do biotipo mitis nos leva a crer que a difteria se encontra sob a forma endêmica. Uma possível alteração na incidência dos biotipos gravis e intermedius poderia ter algum significado epidemiológico. A determinação de lisotipos, bacteriocinotipos ou de marcadores moleculares seria necessária para uma melhor caracterização das cepas epidêmicas de C. diphtheriae.

SACCHI, C.T.; RAMOS, S.R.; MELLES, C.E.A.; BRANDILEONE, M.C.C.; TONDELLA, M.L.C. & TAUNAY, A.E. — Estudo bacteriológico de cepas de Corynebacterium diphtheriae isoladas no Estado de São Paulo, Brasil, no período de 1980 a 1986. Rev. Inst. Adolfo Lutz, 47(1/2):31-37, 1987.

RIALA 6/624

SACCHI, C.T.; RAMOS, S.R.; MELLES. C.E.A.; BRANDILEONE, M.C.C.; TON-DELLA, M.L.C. & TAUNAY, A.E. — Bacteriological study of strains of Corynebacterium diphtheriae isolated in São Paulo State, during the period 1980-1986. Rev. Inst. Adolfo Lutz, 47(1/2):31-37, 1987.

ABSTRACT: A biochemical study was made of 386 strains of Corynebacterium diphtheriae isolated at the Central Public Health Laboratory for the State of São Paulo in the period 1980-1986. Sacharose was fermented by 58.3% of the strains. The most frequent biotype was mitis (52.2%) while intermedius and gravis showed frequencies of 26.4% and 9.9%, respectively, while 11.7% were atypical. Of the intermedius type strains, 75.5% fermented sacharose. Elek's method showed that 92.8% of the strains of all types were toxigenic and that 97.3% of the sacharose-fermenting strains were toxigenic.

DESCRIPTORS: Corynebacterium diphtheriae, biotypes.

REFERÊNCIAS BIBLIOGRÁFICAS

- BARKSDALE, L. The genus Corynebacterium.
 In: STARR, M.P.; STOLP, H.; TRÜPER, H.G.; BALOWS, A. & SCHLEGEL, H.G., ed. The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Berlin, Springer-Verlag, 1981. p. 1827-37.
- BEBEAR, C. Corynébactéries: In: LE MINOR, L. & VÉRON, M. — Bactériologie Médicale.
 2° tirage. Paris, Flammarion, 1984. p. 642-56.
- BROOKS, G.F.; BENNETT, V. & FELDMAN, R.A. — Diphtheria in the United States, 1959-1970. J. infect. Dis., 129(2): 172-8, 1974.
- BROOKS, R. Guidelines for the laboratory diagnosis of diphtheria. [Geneva] WHO [1981]. 27 p. (LAB/81.7).
- CHRISTOVÃO, D.A. Estudo sobre o Corynebacterium diphtheriae. I — Fermentação da sacarose por bacilos diftéricos virulentos isolados em São Paulo. Arq. Hig. Saúde Pública, São Paulo, 11: 97-114, 1957.
- CHRISTOVÃO, D.A. Estudo sobre Corynebacterium diphtheriae. II — Observações sobre bacilos diftéricos e difteróides isolados em São Paulo aspectos morfológicos, propriedades fermentativas, virulência e freqüência dos tipos de Corynebacterium diphtheriae encontrados. Arq. Hig. Saúde Pública, São Paulo, 11: 115-34, 1957.
- COWAN, S.T. & STEEL, K.J. Manual for the identification of medical bacteria. 2nd ed. Cambridge, Cambridge University Press, 1975. p. 161-4.
- COYLE, M.B. & TOMPKINS, Corynebacteria. In: LENNETTE, E.H.; BALOWS, A.; HAUS-LER, W.J., Jr., & TRUANT, J.P. — Manual of clinical microbiology. 3sd ed. Washington, D.C., American Society for Microbiology, 1980. p. 131-8.

- DIXON, J.M.S. Diphtheria in North America. J. Hyg., Camb., 93: 419-32, 1984.
- JONES, D. & COLLINS, M.D. Irregular, nonsporing Gram-positive rods. In: SNEATH, P.H.A.; MAIR, N.S.; SHARPE, M.E. & HOLT, J.G. — Bergey's manual of systematic bacteriology. Baltimore, Willians and Wilkins, 1986. v. 2, p. 1261-76.
- McCLOSKEY, R.V.; SARAGEA, A. & MAXIMESCU, P. — Phage typing in diphtheria outbreaks in the southwestern United States, 1968-1971, J. infect. Dis., 126(2): 196-9, 1972.
- PESTANA, B.R. & FERREIRA, M.P.G. Considerações sobre algumas propriedades bioquímicas do bacilo da difteria. Rev. Inst. Adolfo Lutz, 3:(1): 32-43, 1943.
- RASKIN, M.; PESSÔA, G.V.A.; CALZADA, C.T.; LEE, I.M.L.; MELLES, C.E.A. & SAKA-TA, E.E. — Fermentação da sacarose e toxigenicidade de cepas de Corynebacterium diphtheriae isoladas em São Paulo. Rev. Inst. Adolfo Lutz, 38(1): 29-32, 1978.
- SACCHI, C.T.; TONDELLA, M.L.C.; BRANDILEONE, M.C.C.; MELLES, C.E.A. & PAULA, M.D.N. — Corynebacterium diphtheriae isolado de sangue. Rev. Inst. Adolfo Lutz, 45(1): 73-9, 1985.
- SARAGEA, A.; CARRAZ, M. & GUILLERMET, F. — Analyse des propriétés biologiques d'une collection de souches de Corynebacterium diphtheriae isolées au sud de la France entre 1955-1968. Rev. Inst. Pasteur Lyon, 5(2): 203-11, 1972.
- 16. SARAGEA, A.; MAXIMESCU, P. & MEITERT, E. Corynébacterium diphtheriae: microbiological methods used in clinical and epidemiological investigations. In: BERGAN, T. & NORRIS, J. R. Methods in microbiology. London, Academic Press, 1979. v. 13, p. 61-176.

- SACCHI, C.T.; RAMOS, S.R.; MELLES, C.E.A.; BRANDILEONE, M.C.C.; TONDELLA, M.L.C. & TAUNAY, A.E. Estudo bacteriológico de cepas de Corynebacterium diphtheriae isoladas no Estado de São Paulo, Brasil, no período de 1980 a 1986. Rev. Inst. Adolfo Lutz, 47(1/2):31-37, 1987.
- SOTTNEK, F.O. & MILLER, J.M. Isolation and identification of Corynebacterium diphtheriae. Revised ed. Atlanta, Georgia, Centers for Disease Control, 1982. 14 p.
- SULEA, 1.T.; POLLICE, M.C. & BARKSDALE,
 L. Pyrazine carboxylamidase activity in Corinebacterium. Int. J. Syst. Bacteriol., 30(2): 466-72, 1980.
- TOPLEY, W.W.C. Toplay and Wilson's principles of bacteriology and immunity. 6th ed. London, Edward Arnold, 1975. p.618.
- ZAMIRI, I.; McENTERGART, M.G. & SARA-GEA, A. Diphtheria in Iran. J. Hyg., Camb., 70: 619-25, 1972.

Recebido para publicação em 6 de abril de 1987.

3
ı
f.
3
1
1
ŧ
f
ŧ
1
1
Ī
1
,
ş
ı
3
1
1
ŧ
1
4
•
T.
1
3
ı